WWU Graduate Qualifying Exam, Spring 2008

You may use calculators for this exam. Be advised however that every question can be answered without the use of a calculator and more than likely can be answered more efficiently without the use of a calculator.

1. Define \(f(t) = \int_1^t \frac{1}{s} e^{s^2} \, ds \). Find \(\frac{df}{dt} \).

2. Consider the parabola \(y = 1 - x^2 \) and the triangle made from \(y = a - bx \) (and its reflection \(y = a + bx \)) which has the property that the triangle is tangent to the parabola at the points of contact. The constants \(a \) and \(b \) are positive. Two examples are shown in the diagram.

Find the numbers \(a \) and \(b \) which minimize the area under the triangle and above the \(x \)-axis (note, you can work with just one side of the symmetric problem).

3. (a) Determine whether or not the series \(\sum_{n=1}^{\infty} \frac{\sinh n}{n^n} \) converges, and justify your answer.

(b) Determine whether or not the series \(\sum_{n=1}^{\infty} (-1)^n \tan^{-1} n \) converges, and justify your answer.

(c) Determine for what real values of \(x \) the series \(\sum_{n=0}^{\infty} \frac{(x + 2)^n}{2^{(n+1)}} \) converges and for what values it diverges. Make sure that every value of \(x \) is considered. Justify your answers.

4. Consider the differential equation \(\frac{dy}{dt} = -\frac{1}{t} y + t^\alpha \), valid for \(t \geq 1 \), and where \(\alpha \in \mathbb{R} \) is a parameter.

(a) Find the general solution to this ODE. Warning: pay attention to \(\alpha \).

(b) Consider the long-time behavior \((t \to \infty) \) of your solution(s): show that there is a value \(\alpha^* \) such that the behavior for solutions for \(\alpha < \alpha^* \) is different from the behavior of solutions for \(\alpha > \alpha^* \). Describe these behaviors, and also for the case \(\alpha = \alpha^* \).

(c) Solve the initial value problem \(y(1) = 2 \) for the case \(\alpha = 2 \).
5. While hiking along a trail the elevation increases at a rate of \(\frac{1}{3} \) meters per meter. At a point \(P \) the “current” path then veers more up-hill to a “new” path, making an angle of \(\frac{\pi}{6} \) with the current path. The steepest direction up-hill from \(P \) makes an angle of \(\frac{\pi}{3} \) with the current path.

(a) At what rate will the elevation be increasing when you veer onto the new, more up-hill, path?

(b) What angle does the new path make with the horizontal (i.e. with \(z = \) constant in 3-space)?

(c) If the steepest direction is to the North-West (not as shown in the picture), find a vector which is perpendicular to the surface at the point \(P \) (you should take the positive \(x \)-axis to be due East and the positive \(y \)-axis to be due North).

6. Refering to the diagram to the right, you must find \(\alpha \) which minimizes the sum of the perpendicular squared distances, \(f(\alpha) = d_1^2 + d_2^2 \). The points are at \((1, 2)\) and \((4, 1)\).

(a) Your first task is to find an expression for \(f(\alpha) \). Hint: think about vector projection; the vectors \((1, \alpha)\) and/or \((-\alpha, 1)\) might be useful.

(b) Find the value of \(\alpha \) which minimizes \(f \).
7. Suppose the $n \times n$ tridiagonal matrix

$$T = \begin{bmatrix}
1 & -1 & 0 & \cdots & 0 \\
-1 & 1 & -1 & \ddots & \vdots \\
0 & -1 & 1 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & 0 & -1 & 1
\end{bmatrix}$$

has n eigenvalues λ_j with corresponding eigenvectors \vec{v}_j, for $j = 1, 2, \ldots, n$. Find all the eigenvalues and corresponding eigenvectors of the $n \times n$ tridiagonal matrix

$$A = \begin{bmatrix}
1 + 2\sigma & -\sigma & 0 & \cdots & 0 \\
-\sigma & 1 + 2\sigma & -\sigma & \ddots & \vdots \\
0 & -\sigma & 1 + 2\sigma & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & -\sigma \\
0 & \cdots & 0 & -\sigma & 1 + 2\sigma
\end{bmatrix}$$

in terms of λ_j, \vec{v}_j and σ (assume $\sigma \neq 0$).

8. Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a linear transformation that satisfies

$$T \left(\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad T \left(\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

Find a vector \vec{x}, such that $T(\vec{x}) = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$.

9. Using cylindrical coordinates, find the volume of the region E in space specified by the inequalities $x^2 + y^2 \leq 2y$ and $0 \leq z \leq \sqrt{x^2 + y^2}$.

Hint: You might want to use the integral formula

$$\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx.$$

10. Find the maximum and minimum values of $f(x, y) = x^2 - 2x - y$ subject to the constraint $(x - 1)^2 + y^2 = 1$.

3