This piece is a conceptualization of a vehicle I would build. This image started as a sketch, then continued to make the necessary improvement with the use of a computer software.
Concept electric motorcycle

* Electric motor.
* Battery integrated in chassis.
* Regenerative braking.
* Regenerative shock absorbers
Logo for Gooseman Drywall company in Everett WA. The “G” on “Gooseman” serves as an ambiguous image that uses the negative space to form an image of a popular drywall tool.
This logo was made for an automotive business that provided oil changes, details, and car washes. The company Teddy Bear Car Care was a sister company to an automotive repair facility for which I worked for.
Concept supercar
*Aerodynamic
*Low center of gravity
*Front cooling ducts
*Electric motor/generator

*Exposed rear wheels to maximize cooling
*New age tires
Comfort. Suit made of flexible carbon fiber injected plastic pads molded on leather. The leather is molded on a flexible under layer. Properly placed closable cooling ducts

Utility backpack has upper straps with magnetic hook latch on the bottom (hooks up to upper side of pants). AO technology for ankle support and protection (see slide 13,14,15).

Aerodynamics. Molded pads on suit are low to reduce drag. Backpack is molded with a hard outer shell to reduce turbulence.
Rigid unibody construction
Aerodynamic body
Electric propulsion
Unique front suspension allows for larger wheel travel distance.
In 2010 when my little brother was a senior, the high school contacted me. They asked if I could make a mascot for the Soap Lake High School basketball team so that they could use it for the state tournament. I accepted the challenge.
The eagle head was built on a motorcycle helmet. I used foam that I adhered to outer shell. The structure of the beak was formed out of cardboard then used fiberglass and resin to make the beak stiff and durable. I adhered the beak to the helmet. I cut out the breathing slits that also served as seeing slits and covered with wire mesh. Real feathers were glued and painted the entire head.
TITLE: Helmet Spikes
SIZE: W=2.5” L=2.25” H=4”
DATE: OCT15
MEDIUM: fiberglass, resin, plastic
I made spikes for motorcycle helmets. I first used two long brackets that held up to 5 blades (see slide 11). However because of the contour of the helmet surface, this setup would only fit particular helmet models.

I then decided to make a revised version of the anchor. The new design now holds one spike per one anchor. This will fit a wider application of helmets or any other spherical smooth surface.
Initial concept sketches of the AO footwear. Different configurations that depend on the application. Easy clamp technology for upper and Lower shoe fitment.

Top view: notice properly placed shoe material segments to compliments natural foot bends.
Foot Wear with Ankle Support
Ankle support system
Built in cooling
Aerodynamic
Wide base

Center is made with Breathable mesh.
Rubber molded structure
Through out my life I have been involved in activities that push my feet to the limits. I have been fortunate enough to never seriously injure an ankle. However I can recall many situations where I have seen people injure their ankles. Since we use our feet for everything, it can really dictate the outcome of a desired goal. Therefore if I want to continue my activities through out my life, I want to be able to protect myself against an ankle injury.

This footwear design will first be made specifically for hiking.

Other models will include application for athletics and work.

Low top shoes are good because they tend to be lighter and more comfortable, however they are not a good option if you are an athlete or an outdoor enthusiast, because they do not protect against ankle injury.

AO technology will revolutionize footwear.

*lightweight* comfortable *interchangeable shapes for ankle support system (depending on application)* easy upper and lower footwear clamp *cooling and heating capabilities